Deployment and Goals

A MongoDB cluster is deployed with 3 shards located on 3 machines (Windows Server 2003, 64 bit), for
each 8G virtual memory is assigned. A diagram illustrates the cluster below. We focus on:

1) Compare performance between 3-shard cluster and single node mode, and figure out the influence of
network transmission. As for single node mode, each shard is replaced by a process running on one
single machine (for which 40G virtual memory is assigned);

2) Investigate performance of cluster and figure out the reasons of throughput degradation, for which a
4-shard cluster is deployed.

shard 2
shardl _ <hard 3
machine 3
machine? machine 4
config server
mongos client

machine 1

Comparisons between cluster and single node mode
Insert & Select under variant bulk size

We continuously insert documents into a shard-enabled collection for 10 minutes. Number of insert and
select is recorded once a minute, and each insert/select affects one document containing 11 records.

For cluster mode: insert & select with bulk size = 1, 100 and 1000, and for single node mode: insert &
select with bulk size = 100. Results will reflect the influence of network transmission.



Insert opcounters (sum/mimute)
35000

30000 —_— —
25000 -
20000
15000
10000

5000

1 2 3 4 5 6 7 8 9 10

=== cluster bulk = 1 ====cluster bulk = 100 ====cluster bulk = 1000 ====single node (bulk=100)

Fig 1(a)

Select opcounters (sum/minute)

250000
200000

150000 /
100000 /

50000 -

1 2 3 4 5 6 7 8 9 10

= cluster bulk =1 ===cluster bulk =100 =——cluster bulk =1000 ===single node(bulk=100)

Fig 1(b)

In last report we did not find significant influence of bulk size for insert under single node mode, but we
do under cluster mode this time.

From fig 1(a) we can see: 1) for cluster mode, throughput enhancement from bulk size=1 to 100 is
significant; 2) for bulk size = 100, throughput decrease is acceptable for cluster mode.

From fig 1(b) we can see a large gap between cluster mode and single node mode for select operation.



Because select under single mode is so fast that even a small influence of network transmission will
affect a lot.

Long time insert

We continuously insert data for 6 hours. From Fig2(a), throughput generally decreases during the first 3
hours, but became unstable for the second 3 hours. There might be more disk I0 for memory swap and
chunk movements. | will try to figure out the reasons in the next section. Anyway, cluster mode is more
stable than single mode for the first 3 hours during which period about 6,000,000 documents are
inserted.

Total insert opcounters cluster mode (sum/minute)

40000
35000
30000
25000
20000 I
15000
10000
5000

23

34

45

56

67

78

89
100
111
122
133
144
155
166
177
188
199
210
221
232
243
254
265
276
287
298
309
320
331
342
353

Fig 2(a)

Insert opcounters single node (sum/minute)

40000
35000
30000 -
25000 I
20000
15000
10000
5000 |

45

56

67

78

89
100
111
122
133
144
155
166
177
188
199
210
221
232
243
254
265
276
287
298
309
320
331
342
353

Fig 2(b)




Observe the cluster

Several tests are done to investigate cluster’s performance. Here is a summary for a 4-shard cluster. We
start three threads to insert/select/update documents on one single collection for six hours. Insert bulk
is 100, and interval is 0.

We are going to figure out why the throughput decreases by observing RAM usage, global write lock etc.
Insert throughput

Total cluster insert throughput and that of each shard are illustrated as below. We can find throughput

is stable until about the 287™ minute, after which all documents are inserted to the machine CHN-LUJI
(Fib3-b). We should try to figure out the reason by analyze the status of this shard.

Total insert opcounters (avg/sec)

600
500 Jrsg-—‘ v A =y v
400 ' u w 1

300
200
100
0
AN N <N OO A AN M TN ONOODDO A AN MST WM OMN00OO O H AN M
TSN TN ONOOO A AN N TN ONOODOOAT AN NN ONOOOOAN M S N
™ A A AN AN AN AN AN AN AN ANAN OO OO o
Fig3(a)
Each shard insert opcounters(avg/sec)
600
500 - - A
400 |
300
200
100 -+
0
AN N <N OO A AN M TETND ONOODDO A AN MST WM ON0OO O +HaNMm
SN TN ONOOO AT AN NN ONOODDOTd AN NN ONOOOOAN M S N
I A AN AN AN AN AN AN AN NN OO OO o
e——meli e—mili e—ihuan e—yji

Fig3(b)



Records of RAM usage can be found from Fig 4. The shard CHN-LUJI uses memory up to about 8G which
is the total RAM size. By reading some related documents, | get the knowledge: it is the working set size
plus MongoDB's indexes which should ideally reside in RAM at all times i.e. the amount of available RAM
should ideally be at least the working set size plus the size of indexes plus what the rest of the OS and
other software running on the same machine needs. If the available RAM is less than that, LRUing is
what happens and we might therefore get significant slowdown.

Ram resident (B)

9E+09

8E+09 ‘/nwm
7E+09 7

6E+09

5E+09

ol

2E+09

1E+09
0
O 1 AN N < 1N ONOOOO I AN NN ONOOODO A ANM
O N N <IN OMNOOOEIT AN NN ONOOOOANMS N
™I A A A A AN AN AN AN AN NN AN NN N o
= meli res mili res e===xihuanres == ]|ujires
Fig4

Get significant slowdown will cause heavier write lock percentage. Bad news is that, right now we have a
global lock which applies across all databases on a Mongod instance, and a write lock acquisition is
greedy i.e. a pending write lock acquisition will prevent further read lock acquisitions until fulfilled. So,
the heavy write lock percentage will further cause all operations down which can be observed from Fig 5.

So, the performance decrease is caused by:
RAM limit -> slow down -> heavier global write lock -> whole slow down



Write lock (%) and insert opcounters(sum/minute)
150 40000
v e 30000 =
g 100 Y v L g
% 20000 3
<) (W | 1 o
= 30 10000 &
0 0
HENO MO ANNOATNOMNMUOVAOAOANOR ASTNOMmOO AN
AN TND O NOODO T N INNOOODOANMSTS ON0O H AN M N
I A A AN AN AN AN AN NN OOOONOM
lock insert
Write lock (%) and select opcounters (sum/minute)
150 100000
80000
100 ™ |
" 60000
0 e ot o T VRABAM 20000
VY AWA M- 20000
0 0
TN NN A MO DN A MO NN O NN MOWInNMNOOOeE MmWn s O
TSN N T O N0 OOODO AN MM OO AT NS N ONOOOEAHANMS
YT A A A AN AN AN AN AN AN AN AN N oMM
lock select
Write lock (%) and update opcounters(sum/minute)

150 150000
100 -\ | - 100000
50 Bt bt bt s 2y e | A a0k _..ML L Ll 50000

| ondanddn il "
a sndosiio l l |
0 0
TN NN A MO N A O OO O NN MOWInNMNOOE MmN O
A NN T O NOOODO AN MSTWNMM OO AT NS N ONOOOANMS
YT 1 H A A AN AN AN AN AN AN NN OOOOND oMM
lock == update

Fig 5

PS: Write clock percentage value is the summary value of the four shards, so values may exceed 100.

Conclusions

1.

MongoDB gets many advantages from cluster mode for data insertion (Fig 2 and Fig 3), while
network transmission causes select throughput decrease;




2. RAM size significantly impacts MongoDB’s performance, and we’d better get enough RAM to
avoid degradation of performance;
3. More shards may enhance the whole performance (meanwhile bring more RAM);



