Using LZ4 compression

To use the builtin support for Yann Collet's LZ4 compression, first check that LZ4 is installed in include and library directories searched by the compiler.
Once LZ4 is installed, you can enable LZ4 using the -DENABLE LZ4=1 option to cmake.

If LZ4 is installed in a location not normally searched by the compiler toolchain, you'll need to modify the include and library paths to indicate these
locations. For example, with the LZ4 includes and libraries installed in /fusr/local/include and /usr/local/lib, you would run cmake with the

following additional arguments:

~-DENABLE LZ4~1 -DCMAKE INCLUDE PATH=/usr/local/include -DCMAKE LIBRARY PATH=/usr/local/lib

When opening the WiredTiger database, load the LZ4 shared library as an extension. For example, with the WiredTiger library installed in
/usr/local/lib, you would use the following extension:

error check(wiredtiger open(
home, NULL, "create,extensions«[/usr/local/lib/libwiredtiger lzd.s0]", &conn));

Finally, when creating the WiredTiger object, set block_compressor 10 1z4:

error check(session->create(
session, "table:mytable", "block compressor=lz4, key formateS,value format«S"));

Using snappy compression

To use the builtin support for Google's snappy compression, first check that snappy is installed in include and library directories searched by the
compiler. Once snappy is installed, you can enable snappy using the -DENABLE SNAPPY=1 option to cmake.

If snappy is installed in a location not normally searched by the compiler toolchain, you'll need to modify the include and library paths to indicate these
locations. For example, with the snappy includes and libraries installed in /fusr/local/include and /usr/local/1lib, you would run cmake with the
following additional arguments:

-DENABLE_SNAPPY«~1 -DCMAKE INCLUDE PATH«/usr/local/include -DCMAKE LIBRARY PATH«/usr/local/lib

When opening the WiredTiger database, load the snappy shared library as an extension. For example, with the WiredTiger library installed in
/usr/local/lib, you would use the following extension:

error check(wiredtiger open(
home, NULL, "create,extensions«[/usr/local/lib/libwiredtiger snappy.so]", &conn));

Finally, when creating the WiredTiger object, set block compressor 10 snappy:

error check(sesslion->create(
session, "table:mytable", "block compressor=snappy,Xey format«S,value format=S"));

Using zlib compression

To use the builtin support for Greg Roelofs' and Mark Adler's zlib compression, first check that zlib is installed in include and library directories searched
by the compiler. Once zlib is installed, you can enable zlib using the -DENABLE ZLIB=1 option to cmake.

If zlib is installed in a location not normally searched by the compiler teolchain, you'll need to modify the include and library paths to indicate these
locations. For example, with the zlib includes and libraries installed in /usr/local/include and /usr/local/1lib, you would run cmake with the
following additional arguments:

~-DENABLE ZLIB«1 -DCMAKE INCLUDE PATH=/usr/local/include -DCMAKE LIBRARY PATH«/usr/local/lib

When opening the WiredTiger database, load the zlib shared library as an extension. For example, with the WiredTiger library installed in
/usr/local/lib, you would use the following extension:

error check(wiredtiger open(
home, RULL, "create,extensions«[/usr/local/lib/libwiredtiger zlib.sec]", &conn));

The default compression level for the zlib compression is Z DEFAULT COMPRESSION (see the zlib documentation for further information); compression
can be configured to other levels using the additional configuration argument compression level.

error check(wiredtiger open(home, NULL,
“create, extenaions-[/usr/locallliblllbwiredtlger zlib.so=[config=[compression level=3]]]",
&conn)),

Finally, when creating the WiredTiger object, set block_compressor 10 z1ib:

error_check(session->create(
session, "table:mytable", "block compressor=zlib, key format«S,value format«S"));

Using Zstd compression

To use the builtin support for Facebook's Zstd compression, first check that Zstd is installed in include and library directories searched by the compiler.
Once Zstd is installed, you can enable Zstd using the -DENABLE _ZSTD=1 option to cmake.

If Zstd is installed in a location not normally searched by the compiler toolchain, you'll need to modify the include and library paths to indicate these
locations. For example, with the Zstd includes and libraries installed in /fusr/local/include and /usr/local/lib, you would run cmake with the

following additional arguments:

~-DENABLE ZSTD«1 -DCMAKE INCLUDE PATH«/usr/local/include -DCMAKE LIBRARY PATH«/usr/local/lib



