
Put(,)

(June ‘24) Tuning The Trimming Factor The Crypto Team

Tuning The Trimming Factor

For arbitrary lower and upper bounds lb and ub, there are certain values of the trimming factor
that can negatively impact correctness and query efficiency.1 In this document, we describe two
mappings that, given any domain, will output an appropriate trimming factor that maintains
correctness, while achieving a good trade-off between query latency, insertion throughput, and
storage overhead. In the following, we assume that there exist a default trimming factor tf ∈ N≥0
as well as a default sparsity factor sp ∈ {1, 2, 4, 8}.2

The integer case. The mapping , mapI , applies to the following numerical data types: sint32,
int64 and sint64 and is defined as follows.

mapI(lb, ub) =


⊥ if ub < lb

min
(

tf,
⌊
sp−1 ·

(⌈
log(ub − lb + 1)

⌉)⌋)
otherwise.

where lb and ub belong to the underlying domain of the numerical data type.

The floating-point format case. The mapping , mapF , applies to the following numerical
data types: bin128 and dec128 and is defined as follows.

mapF (lb, ub, prc) =


⊥ if ub < lb

min
(

tf,
⌊
sp−1 ·

(⌈
log((ub − lb + 1) · 10prc)

⌉)⌋)
otherwise.

where lb and ub belong to the underlying domain of the numerical data type and where prc ∈ N≥0.

1For example, if both the domain and the chosen trimming factor are large, then at query time, there are
cases where the size of the cover can be extremely large. A very large cover has two implications: an efficiency
implication as the number of binary hops is proportional to the size of the cover; and a correctness implication,
as the number of generated tags in this case can be too high exceeding the BSON limit.

2Our experiments show that setting the trimming factor to 6 and the sparsity factor to 2 achieves the best
trade-off between query latency and insertion throughput.

Page 1


