
UNCAUGHT_EXCEPT
Quality Checker

Overview
Supported Languages: C#, C/C++, CUDA, Objective-C/C++

UNCAUGHT_EXCEPT finds many cases in which an exception is thrown and
never caught, or violates a function's exception specification. Usually, the
result of such behavior is abnormal program termination.

The checker reports a defect if any of the following items occurs:

• An exception that is not allowed by the exception specification of a
function is thrown.

• An exception is thrown from a root function. By default, a root function
is defined as having no known callers, and its name matches the
following regular expression:
((((^|_)m|M)ain)|(^MAIN))$
The preceding regular expression matches main, WinMain, MAIN. It
does not match DOMAIN.

Note: By default, the checker ignores bad_alloc exceptions
because operator new often throws this exception, and most programs
are not affected by it. The except_ignore option to this checker and
the --handle-badalloc option to cov-analyze override this default
behavior.
Enablement

C#
Disabled by default: This checker is disabled by default. To enable it, you
can use the --enable option to the cov-analyze command. For
enablement/disablement details and options, see "Enabling and disabling
checkers" in Customizing Coverity.

C++, CUDA, Objective-C++
Enabled by default: This checker is enabled by default. For enablement/
disablement details and options, see "Enabling and disabling
checkers" in Customizing Coverity.

Examples

https://coverity.corp.mongodb.com/doc/en/cov_customizing.html
https://coverity.corp.mongodb.com/doc/en/cov_customizing.html

This section provides one or more UNCAUGHT_EXCEPT examples.

// Example 1:
// Prototypical defect.
int main(){
 throw 7;
 return 0;
}
// Example 2:
// A simple defect resulting from a function call.
void fun() {
 throw 7;
}
int main(){
 fun();
 return 0;
}
// Example 3:
// An exception is thrown,
// violating the exception specification.
void fun() {
 throw 7;

}
void cannot_throw() throw() {
 fun();
}
// Example 4:
// An exception is thrown inside a try-catch block,
// but none of the catch statements has a matching
type.
class A {};
class B {};
class C {};

int main(){
 try {
 throw A();
 } catch (B b){
 } catch (C b){
 }

 return 0;
}
// Example 5:
// The exception is caught, but can be re-thrown.
class A {};

int main() {
 try {
 throw A(); //Will not be caught.
 } catch (...){
 cerr << "Error" << endl;
 throw;
 }
}
Options
This section describes one or more UNCAUGHT_EXCEPT options.

You can set specific checker option values by passing them with --
checker-option to the cov-analyze command. For details, refer to
the Coverity 2023.12.2 Command Reference.

•
UNCAUGHT_EXCEPT:except_ignore:<exception_class_iden
tifier_pattern> - This option excludes matching unqualified
identifiers that escape a root function. The checker excludes an
exception from the defect report if the pattern matches a class
identifier for the exception. Default is unset.
The checker treats the value to this option as an unanchored regular
expression unless the value completely matches an exception class
identifier. In the latter case, the checker only excludes full matches
and does not exclude exceptions that partially match the value. You
can specify this option multiple times.
In the rare case that an exception is not an instance of a class, this
option will not affect defect reporting on that exception.
The checker runs this option after running except_report.
Unlike except_report, this option does apply to exception-
specification violations.
If you use this option, the checker only excludes
a bad_alloc exception if there is a matching value. Otherwise, it
reports this exception.

https://coverity.corp.mongodb.com/doc/en/cov_command_ref.html

•
UNCAUGHT_EXCEPT:except_report:<exception_class_iden
tifier_pattern> - This option finds matching unqualified
identifiers that escape a root function. The checker includes an
exception within the defect report if the pattern matches the class
identifier for the exception. Default is unset.
The checker treats the value to this option as an unanchored regular
expression unless the value matches an exception class identifier
completely. In the latter case, the checker only reports full matches
and does not report exceptions that partially match the value. You
can specify this option multiple times.
You can use this option to force the checker to
report bad_alloc exceptions. It has no effect on the reporting of
exception-specification violations.
This option is backwards compatible with pre-5.4 comma-separated
string values.

• UNCAUGHT_EXCEPT:follow_indirect_calls:<boolean> -
When this option is true, and either virtual function call tracking and/
or function pointer tracking are enabled, UNCAUGHT_EXCEPT will
follow such indirect calls for the purpose of propagating thrown
exceptions. When false, exceptions are not considered to propagate
across indirect calls, even when indirect call tracking is otherwise
enabled. Defaults to false.

•
UNCAUGHT_EXCEPT:fun_ignore:<function_identifier_pat
tern> - This option excludes an exception from a defect report if it
results from a function that partially or fully matches the specified
value. You specify function identifiers in the same was as you specify
them for fun_report. Default is unset.
This option does not apply to exception-specification violations.
This option overrides the fun_report option.
You can specify this option multiple times. The checker examines all
matching values.

•
UNCAUGHT_EXCEPT:fun_report:<function_identifier_pat
tern> - This option specifies a partially or completely matching
function identifier. The checker treats the value to this option as an

unanchored regular expression. That is, a single identifier causes a
full match, while a regular expression metacharacter yields a partial
match. Default is unset.
If you specify fun_report, the checker treats:

◦ Any function that has an unqualified identifier (for
example, foo in bar::foo(int)) that matches the <value>
as a root function, and it reports any exceptions that escape
from it as defects. The checker behaves in this manner
regardless of whether other functions call the matching function
or not.

◦ main and its variants (for example, WinMain, and MAIN) as
entry points only if their function identifiers match one of the
specified values.

• This option does not apply to exception-specification violations.
You can specify this option multiple times. The checker examines all
matching values.

• UNCAUGHT_EXCEPT:report_all_fun:<boolean> - When this
option is set to true, it enables the reporting of exceptions for all
functions that are not called by other functions. Defaults to false.
This checker option is automatically set to true if the --
aggressiveness-level option of the cov-analyze command is
set to high.

• UNCAUGHT_EXCEPT:report_exn_spec:<boolean> - When this
option is set to false, it disables reporting of exception-specification
violations. Defaults to true.

• UNCAUGHT_EXCEPT:report_thrown_pointers:<boolean> -
When this option is set to true, the checker reports an error when
any pointer is thrown. Throwing by value is recommended, while
throwing by pointer discouraged. Defaults to false.
Example:
struct A { };

• int main() {
• try {
• // The programmer actually wanted "throw

A();"
• throw new A();
• } catch (A &a) {
• } catch (...) {
• // The exception is caught here, but was

intended
• // to be caught in the above block.
• }
• }

Events
This section describes one or more events produced by
the UNCAUGHT_EXCEPT checker.

• Only one of the two following events is possible:

◦ exn_spec_violation - Indicates that a function threw an
exception that is not allowed by its exception specification.

◦ root_function - Indicates that a root function does not catch
an exception that could be thrown during its execution.

• Any number of the following events is possible:

◦ fun_call_w_exception - Indicates that an exception is
thrown by a function. It has a model link.

◦ fun_call_w_rethrow - Indicates that a function has
a rethrow_outside_catch event.

◦ rethrow - Indicates that a throw statement re-throws an
exception that is never caught.

◦ rethrow_outside_catch - Indicates that throw statement
occurred outside of function that contains a try statement.

◦ uncaught_exception - Marks throw statements that
produce an exception that will never be caught.

