Overview
There appears to be a bug where data can go missing in MongoDB. The problem seems to occur when doing a large number of inserts into a sharded cluster while the balancer is running. In all instances where we lost data, wiredTiger was the storage engine and the shard key was effectively a random UUID, so that inserts were going to all shards.
The test description and program shows the error with a Java application using a MongoDB database, but we also had the problem (less frequently) with a Python script.
The bug seems to be some sort of concurrency/race condition problem. It is not guaranteed to happen on any one run, but we were able to replicate it fairly consistently. The number of documents missing range from 1-1000 during 400,000-800,000 inserts.
Also note that we counted documents in two ways to determine that we had lost documents. The first was by running an aggregate to count the documents in an effort to avoid the way count() works when the balancer is running. We also waited for the balancer to finish and ran both a count() and an aggregate to ensure that documents are missing.
System Configuration & Setup
We tested with the following verions
MongoDB Versions: 3.0.1, 3.0.2. For any given test, the instances were all running the same version of mongo.
OS Version: Centos 6.6
Write Concern: Acknowledged, Majority. On a few tests we had journaling enabled as well.
Java version: 8u25
Java Driver: 3.0.0, 2.12.2
Cluster Setup
We had the error occur in two different configurations, one with many servers and one mongod on each, and one with all mongo applications on one server.
Please note that the servers we were running on were virtual and did not have particularly high iops.
Single Server:
3 shards, each shard was a replicate set with only one mongod instance, run with options:
./bin/mongod –replSet <REPL_SET_ID> --dbpath <DB_PATH> --port <PORT> --logpath <LOG_PATH> --fork –storageEngine wiredTiger
1 config server, run with options:
./bin/mongod –configsvr –dbpath <DB_PATH> --port <PORT> --logpath <LOG_PATH> --fork –storageEngine wiredTiger
1 mongos, run with options:
./bin/mongos –configdb <CONFIG_SERVER_PATHS> --logpah <LOG_PATH> --port <PORT> --fork
Many Servers:
3 shards, each shard was a replicate set with two mongod instances and one arbiter, run with options:
./bin/mongod –replSet <REPL_SET_ID> --dbpath <DB_PATH> --port <PORT> --logpath <LOG_PATH> --fork –storageEngine wiredTiger
3 config server, run with options:
./bin/mongod –configsvr –dbpath <DB_PATH> --port <PORT> --logpath <LOG_PATH> --fork –storageEngine wiredTiger
1 mongos, run with options:
./bin/mongos –configdb <CONFIG_SERVER_PATHS> --logpah <LOG_PATH> --port <PORT> --fork
The replica sets were configured and primaries were elected prior to running the tests.
Our application
The Java application simply starts up a number of threads and each thread inserts a number of documents. There are options in the application to specify a message to more easily determine what data went missing.
The document structure is simarly to:
	{ _id: “”, // Either a copy of the uuid field or the mongo generated ObjectId
 uuid: “”, // A UUID created by java.util.UUID.getRandomUUID().toString()
 threadName: “”, // The name of the thread that inserted the document
 message: “”, // A message that can be specified on a per-run basis
 count: “” // A one-up number generated on a per-thread basis
}

The Tests
To run a test, we would run the Java application to insert 400,000 documents into an unsharded database collection. After that completed, we would log into the mongos and shard the collection with the commands:
db.ourcollection.createIndex({<SHARD_KEY>})
sh.shardCollection(‘database.collection’, {<SHARD_KEY>})
[bookmark: _GoBack]When that was completed, we would manually insert one document to start the balancer. We would watch the logs to ensure that the balancer was working. Once the balancer started, we would run our application again, so that multiple threads in the application were inserting documents into Mongo while the balancer was running.
Common Themes and what we noticed
The following seemed to be the common pieces that would cause MongoDB to lose data. Please keep in mind that this does not mean these are the actual causes, simply our observations and speculation.
· We only lost data when WiredTiger was the storage engine, never with MMAP
· We only lost data when the shard key was effectively or random UUID, whether it was sharded on the ‘uuid’ field or it was sharded on the ‘_id’ field when the ‘_id’ field was set to our UUID.
· We only lost data when the balancer was running and we were inserting data at that time. The only data that was lost was the data being inserted while the balancer was running, the data that was there prior to the balancer running always existed at the end of the test.
· On tests where we did something to slow down the inserts the likelihood of there being problems decreased.
· One one test we did a find() immediately after doing an insert and match each field to ensure the exact document was found. That test did lose data, so one record was lost after our application and run a find() to retrieve it and it was successful.
· We noticied the problem with both Python and Java, but it occurred much more often with our Java program. We are also better Java programmers, and our Java program runs much faster than our python program.
Test Results
Below are the results we recorded. We tested a number of different scenarios, including what the _id was set to, and what field was sharded, and how many records were inserted.
In the _id column below, the value ObjectId means the Mongo generated ObjectId
	
	Shard
Key
	_id
	# Lost
	Mongo
Version
	Engine
	Description
	Language

	1
	Uuid
	Uuid
	1
	3.0.1
	WT
Snappy
	400K non-sharded
Shard and start balancer
400K while rebalancing
	Python

	2
	Uuid
	Uuid
	5
	3.0.1
	WT
Snappy
	400K non-sharded
Shard and start balancer
400K while rebalancing
	Python

	3
	_id
	ObjectId
	0
	3.0.1
	WT
Snappy
	Show-down – put a find after every insert to find the document just inserted.
Every inserted document was found.
400K non-sharded
Shard and start balancer
400K while rebalancing
	Java

	4
	_id
	ObjectId
	0
	3.0.1
	WT
Snappy
	400K non-sharded
Shard and start balancer
800K while rebalancing
	Java

	5
	_id
	ObjectId
	0
	3.0.1
	WT
Snappy
	400K non-sharded
Shard and start balancer
800K while rebalancing
	Java

	6
	_id
	ObjectId
	0
	3.0.1
	WT
Snappy
	800K inserted into an already sharded collection
	Java

	7
	_id
	ObjectId
	0
	3.0.1
	WT
Snappy
	800K inserted into an unsharded collection then shard the collection and let the balancer run
	Java

	8
	_id
	Uuid
	88
	3.0.1
	WT
Snappy
	400K non-sharded
Shard and start balancer
800K while rebalancing
	Java

	9
	_id
	ObjectId
	0
	3.0.1
	WT
Snappy
	400K non-sharded
Shard and start balancer
800K while rebalancing
	Java

	10
	Uuid
	Uuid
	964
	3.0.1
	WT
Snappy
	400K non-sharded
Shard and start balancer
800K while rebalancing
	Java

	11
	Uuid
	Uuid
	60
	3.0.1
	WT
Snappy
	400K non-sharded
Shard and start balancer
800K while rebalancing
	Java

	12
	Uuid
	Uuid
	5
	3.0.1
	WT
Snappy
	Show-down – put a find after every insert fo find the document just inserted.
Every inserted document was found.
400K non-sharded
Shard and start balancer
800K while rebalancing
	Java

	13
	Uuid
	Uuid
	7
	3.0.1
	WT
Snappy
	Show-down – put a find after every insert fo find the document just inserted.
Every inserted document was found.
400K non-sharded
Shard and start balancer
800K while rebalancing
	Java

	14
	Uuid
	Uuid
	0
	3.0.1
	WT
Snappy
	Turned off balancing
Inserted 800K into the database from #13
Turned balancing back on and let it rebalance
	Java

	15
	Uuid
	Uuid
	0
	3.0.1
	Mmap
	400K non-sharded
Shard and start balancer
800K while rebalancing
	Java

	16
	Uuid
	Uuid
	0
	3.0.1
	Mmap
	400K non-sharded
Shard and start balancer
800K while rebalancing
	Java

	17
	Uuid
	Uuid
	0
	3.0.1
	Mmap
	400K non-sharded
Shard and start balancer
800K while rebalancing
	Java

	18
	Uuid
	Uuid
	287
	3.0.1
	WT
Snappy
	400K into a sharded cluster with balancing on
	Java

	19
	Uuid
	Uuid
	0
	3.0.1
	WT
Snappy
	400K into sharded cluster with balancer off
Turned balancer on and allowed it to balance, then turned it off.
800K into the sharded cluster with the balancer off.
Turned on balancer and allowed it to balance, then turned it off.
400K into sharded cluster with balancer off
	Java

	20
	Uuid
	Uuid
	148
	3.0.2
	WT
Snappy
	800K into sharded cluster with balancer on
	Java

	21
	Uuid
	Uuid
	188
	3.0.2
	WT
Zlib
	800K into sharded cluster with balancer on
	Java

	22
	Uuid
	Uuid
	12
	3.0.2
	WT
Zlib
	400K non-sharded
Shard and start balancer
800K while rebalancing
	Java

	23
	_id
	ObjectId
	0
	3.0.2
	WT
Zlib
	800K into sharded cluster with balancer on, Journaled write concern
	Java

	24
	Uuid
	Uuid
	361
	3.0.2
	WT
Zlib
	800K into sharded cluster with balancer on, Journaled write concern
	Java

	25
	Uuid
	Uuid
	61
	3.0.2
	WT
Snappy
	400K non-sharded
Shard and start balancer
800K while rebalancing
	Java

s tobe g e i g Mgt e b

e e e o B o e e o S

ety

B ——

e et o

e ————

o e vt e s e e o o

sk

ey g s o e e ey)

e i, Wo e B o
e e e e et

[c——

e s

e S0 5 et e o e

L S —————
v s

[——

s

R —
e s e e .

ey

[am—
5 i e s e o s A

T e ———
ok e T

R ——

