Uploaded image for project: 'Core Server'
  1. Core Server
  2. SERVER-21178

Super slow query and increased memory usage on inefficient range queries

    • Type: Icon: Bug Bug
    • Resolution: Duplicate
    • Priority: Icon: Major - P3 Major - P3
    • None
    • Affects Version/s: 3.0.5
    • Component/s: Querying
    • None
    • ALL
    • Hide

      1.insert same data as the structure.
      2.build index.
      3.run query against the index.

      Show
      1.insert same data as the structure. 2.build index. 3.run query against the index.
    • None
    • None
    • None
    • None
    • None
    • None
    • None

      It costs more than 20 mins to query 1 hour's data, which is about 10,000 doucuments, and the server's 100GB memory can be used up by these queries.

      Details:
      I setup a server with wiredtiger engine, config like:

      wiredTiger:
          engineConfig:
            cacheSizeGB: 100
            statisticsLogDelaySecs: 0
            journalCompressor: snappy
            directoryForIndexes: true
          collectionConfig:
            blockCompressor: snappy
          indexConfig:
            prefixCompression: true
      

      I have a collection named 'orders'. The documents look like:

      {
        order_id:485548,
        order_status:
        [
          {
            update_time:ISODate("2015-10-28T02:45:00Z"),
            status:1
          },
          {
            update_time:ISODate("2015-10-28T03:18:00Z"),
            status:2
          }
        ]
      }
      

      I built an index:

      "key" : {"order_status.update_time" : -1,  "order_status.status" : -1}
      

      then I run this query:

      db.order.find({ "order_status" : { "$elemMatch" : { "update_time" : { "$gte" : ISODate("2015-10-28T02:00:00Z"), "$lt" : ISODate("2015-10-28T03:00:00Z") }, "status" : 2 } } }).explain();
      

      I get:

      "indexBounds" :
      {
        "order_status.update_time" :
        [
          "[new Date(1446001200000), true)"
        ],
        "order_status.status" :
        [
          "[2.0, 2.0]"
        ]
      }
      

      I guess this means scan all data before '2015-10-28T03:00:00Z', which is more than 40GB data.

      after I change the query to

      db.order.find({ "order_status" : { "$elemMatch" : { "update_time" : { "$gte" : ISODate("2015-10-28T02:00:00Z") }, "status" : 2 } } }).explain();
      

      I get:

      "indexBounds" :
      {
        "order_status.update_time" :
        [
          "[new Date(9223372036854775807), new Date(1445997600000)]"
        ],
        "order_status.status" :
        [
          "[2.0, 2.0]"
        ]
      }
      

      This looks better and runs much faster (finished within a second), but how can I get my original query work?

        1. mongo_index_bound_test.txt
          2 kB
          Hoyt Ren
        2. mongo_query_explain.txt
          10 kB
          Hoyt Ren

            Assignee:
            david.storch@mongodb.com David Storch
            Reporter:
            Hoyt Ren Hoyt Ren
            Votes:
            0 Vote for this issue
            Watchers:
            4 Start watching this issue

              Created:
              Updated:
              Resolved:
              None
              None
              None
              None